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Answers to questions posted at:
http://enricol.physics.indiana.edu/messier/post/
nssO9ganda.txt
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Neutrino detectors

e Topics for the remaining two lectures
e Today

e Cherenkov detectors

e Tracking calorimeters
e Thursday

e tau neutrino detection

e | arge liquid scintillator detectors

e Time projection chambers
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Super-Kamiokande
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Neutrinos from the Sun

vvvvvvvvvvvvvvvvv

e
(N

Preliminary
SK-Ill 289 days

Full Final sample
6.5 - 20 MeV, 22.5 kton

Signal: 3378.9 "3/ stat.only

General performance

e Sensitive to a wide range of
energies. Capable of electron and
* Data

photo detection down to ~5 MeV | . Redastna
: — Best fit (*B MC + background)

Event/day/kton/bin
o
o

O
—

0.05!

e Tracks produce rings on the walls. bt shentantyt it ataas agastye s
In high multiplicity events overlap ’
of rings makes reconstruction o . . .

difficult. Typically, analyses focus 4 05 0 05 1
on quasi-elastic events which are

very often single-track events. e Events with pions (and other

tracks) that are below Cherenkov
e For single track QE events, threshold lead to backgrounds for
neutrino energy reconstructed the quasi-elastic selection
from kinematics (see next slides)
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Angle between v and sun
SNO & S (BTN R S f‘ ; g

Elastic Scattering

Vix 8 =Wy e

6000 mwe
overburden

1000 tonnes D,0

12 m Diameter

Acrylic Vessel 1-1/3 Cos ()sun

1700 tonnes Inner
Shield H,O

Support Structure
for 9500 PMTs,
60% coverage

Charged Current

ve+td—»p+p+e

5300 tonnes Outer
Shield H,O

Neutral Current

e SNO detector used 1 kt D20 instead of ordinary water. Provided additional
detection channels at low energy: v, +e — v, +e ES=CC+ 1/6 NC

vet+d—p+p+e CC
Ve +d—=p+n+v, NC

n+d—1t+vy+6.20 MeV
 Neutron tagging by: , 43507 — 3607 4+ ~ + 8.6 MeV
n+°He —p+t+0.76 MeV
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Cherenkov effect

e |f speed of charged particle exceeds
speed of light in a dielectric medium of
iIndex of refraction n, a “shock wave”
of radiation develops at a critical
angle:

cos O = n,ﬂ > —

p

e PMTs record time and Charge which
provide unique solution for track
position and direction. For Nhit PMTs
measuring light arrival time t, minimize:

where TOF is the time of flight for
photons to go from the track to the
PMT
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10 TeV neutrino Induced muon neutrino In lce

Cube

1 km
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Early times
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Times differ by
roughly 2.5
usec. For PMT
with ~10 ns
time resolution
this gives an up
vSs. down
discrimination
of > 250

sigma !



Cherenkov effect

e Threshold means that slow particles 1
produce no light. As particles come to a Pthresh = m\/ 21
stop their rings collapse. Useful for particle ==
ID near threshold.

Pthresh [MeV/C] HC’
¢ L T K D =1 #=0.9
Water n=133 1058 120 159 563 1070 42 33
Mineral Oil n=1.46 | 047 98 130 458 817 47 41

e Number of photons produced per unit path g 30:” RREEUE B R L SRR S R AR KA R R

length: £ _F :

7 0 2

TN _ 2maz (1 — ) _ 370500 (E)/eV/om & CF| E

dvd\ N2 32n(X)? ¢ A :
15\

e |n both oil and water the useful part of this 10} Mineral oll =
spectrum is between 300 and 600 nm | AN _
bracketed by Rayleigh scattering on the low St W a

: . - Vater fiss :
end and absorption on the high end e —— 2

P B N B B 'i B B R 1 (R D e o
00 150 200 250 300 350 400 450 500 550 600
wavelength [nm]
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Photomultiplier tubes

Photon incident on the
photocathode produces a photo-
electron via the photoelectric
effect. Probability to produce a
photoelectron is called the
quantum efficiency of the PMT.

Output signal is seen
as a current delivered
to the anode. Typical
gains are 10° yielding
pC-scale currents

Phatacathode o
| Ebactrons -
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Phoiomusipliar tube (PMT)

A series of plates called dynodes are held
at high voltage by the base such that
electrons are accelerated from one dynode
to the next. At each stage the number of
electrons increases. Probability to get first
electron from the photocathode to the first
dynode is called the collection efficiency.

Tuesday, July 7, 2009

cable

.

glass mult-seal

cable length
e~ 0000

]
o
_E.
i t .
& _
A s =) o
=3 E ;
Yl E i
o |
5 proof structure
=
[a'l
(610+20)
20 R
100 ns transit time, 2.2 ns time resolution
. 0.35
w
& 0.225
(o]
= b2 f/\““
= _ / N
% 0175 | / %
T oas L
[ : B
t:j:f 0.125 X \
] : K \\
0.1 F \
0.075 \
0.05 [
- / N\
2.025 / \\\
%50 300 350 400 450 600 550 60O B30 7D
Wave length (nm)
< O >

wavelength of Cherenkov photons in water



Quiz

Q. Estimate the vertex resolution for a water Cherenkov detector for a 10 MeV
electron produced by the elastic scatter of a solar neutrino. Assume 40% of
the detector walls are covered by PMT's and that the PMT’s have an average
of 25% efficiency. Estimate the energy resolution at this energy.

A: A 10 MeV electron will go about 5 cm in the tank making about N =
370*sin(42°)? = 160 photons. Of those (0.4*0.25) = 0.1 will be detected. So |
have ~16 detected photons each with a timing resolution of 2 ns ~= (60 cm *
1.33) = 80 cm since the speed of light is n * 30 cm/ns. This gives a final
resolution of about: 80 cm/sqrt(16) = 20 cm. Energy resolution dominated by
Poisson fluctuations on the number of photons collected. In this case
~sqrt(16)/16 = 25%.

Q: Compare the detection efficiencies for the Kamiokande (20%
photocathode coverage) and IMB-1 (1% photocathode coverage) fora 15
MeV super-nova neutrino

A: 15 MeV corresponds to about 240 photons which is about 0.6 detected
photons on average in IMB and 12 in Kamiokande. Efficiency for detection is
roughly 1-exp(-0.6) = 45% for IMB and 1-exp(-12) = 99.99% for Kamiokande.
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Super-Kamiokande
Bun 3490 Event 084247
. AL LR Rt L B b -
Irmes . 2057 Dats, §630 3¢ &>
a < ’r < ’r‘ ’I I OV Outez: § ®ats, § 3€ (in-time) —J“L gae”
u : I2: ext? [ s : ]
1.4 on .

Ring Counting - \ @

O Not-hit PMT
O HitPMT

. PMT corresponding to
circle

Times (n)

Circles overlap —
F/gures from M. Earl’s PhD TheS/s

in center of nng corresponding
to direction of particle

PMT array N b) Tube hits in 6-¢ space
If you know the pattern
you are looking for (line,
circle, oval, etc.) the 3 )
Hough transformisa @ 2
method for converting ° =
a pattern recognition
problem to a peak
finding problem
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Quasi-elastic reconstruction v, +n—u +p

'E _2 3, . )
E, = —— "2 From 2 body kinematics
my — Ej + picost,
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Figure 2: (left) The scatter plots of the reconstructed neuntrino energy versus the true one for Vy
events. The method of the energy reconstruction is expressed in Equation E (right) The energy
resolution of v, events for 2 degree off-axis beam. The shaded (red) histogram is for the true QE
events.
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Water Cherenkov:
e/l identification

e At low momenta
one can correlate
the particle visible
energy with the
Cherenkov angle.
Muons will have
“collapsed” rings
while electrons are
~always at 42°.

® At higher
momenta, look at
the distribution of
light around
Cherenkov angle.
Muons are “crisp”,
electron showers
are “fuzzy”. See
plots and figures
at the right.
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Particle ID in lce Cube

10 TeV muon neutrino
iInduced upward muon
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1-Ring, e-Like Reconstruction Efficiency vs Reconstructed Energy for v, CC Events
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Pushing the technology: Sub-GeV to Multi-GeV
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2 GeV visible energy
One is signal, the other background
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20% or 40%

PMT’s cost ~$3K USD and are one of the schedule drivers for construction of very

Photocathode coverage”

large water Cherenkov detectors. Can you live with fewer?

Super-K I (40% coverage)

Super-K II (20% coverage)

Sub-GeV vertex resolution

26 cm (e-like) / 23 cm (p-like)

30 cm (e-like) / 29 cm (u-like)

Sub-GeV particle mis-ID

0.81% (e-like) / 0.70% (p-like)

0.69% (e-like) / 0.96% (u-like)

Sub-GeV momentum resolution

4.8% (e-like) / 2.5% (p-like)

6.3% (e-like) / 4.0% (u-like)

p—e*n° signal efficiency 40.8:1.2 6.1% 42.2+1.2 +6.3%
p— e*n° background 0.39(+35%) events/100kty 0 events/100kty
p— K*v, y tag signal efficiency 8.4:0.1:1.7% 4.7+0.1+1.0%

p— K*v, v tag background

0.72(+28%) events/100kty

1.4(x30%) events/100kty

p— K*v, m*n° signal efficiency

5.5:0.1 £0.7%

5.710.1 £0.4%

p— K*v, m*n° background

0.59(+28%) events/100kty

1.0(x30%) events/100kty

T2K CCyv_ likelihood effic.

83.7% (+0.1% stat)

84.8 %

T2K BG likelihood effic.

21.3%

21.5%

S.T. Clark, Ph.D. Thesis (2006)
F. Dufour, T2KK Workshop (2006)
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Preliminary numbers, for comparison purposes.
Final published efficiencies and BG may differ.
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The MINOS Detectors

MINOS uses two

functionally equivalent

detectors:

® 2. .54 thick magnetized
steel plates

® 4.1 x 1 cm co-extruded
scintillator strips

® optical fiber readout to
multi-anode PMT’s
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scintillator
modules

layered on steel
plane

“strong back”.
Removed after
plane is hung in
place

Tuesday, July 7, 2009



Scintillation process

e Scintillators are solid or liquid
materials that produce light shortly
after absorbing energy from a passing
particle

“Shortly” here is characterized by the
decay time of the scintillator with the
number of photons emitted varying
as n(t) = k(1 — e ¥/7). The fastest
scintillators have tau’s at low as 5 ns.
Typical values are 10-100 ns.

The number of scintillation photons
produced per unit energy deposited
goes as: dE /dx
n — Ny
1+ BdFE/dx
where B is “Birk’s” constant and

accounts for saturation of the
scintillator at high energy depositions.

Tuesday, July 7, 2009

e Scintillation light is emitted in a

distribution peaked typically around
350-400 nm. It is common to use
compounds (eg. PPO, POPOP) which
absorb this light and re-emit it at
longer wavelengths where the
scintillator has less absorption and
where the fiber absorbs strongly.

Light is captured by the fiber at
typically 420 nm and reemitted at
around 470 nm and is carried to the
ends by total internal reflection.
Transport characterized by a short
attenuation length (~2 m) and a long
attenuation length (~8 m).

¢ Final photon spectrum is well matched

to wavelength response of PMT’s



Fred Reines and Clyde Cowan. 1995 Nobel to

Reines for the detection of the neutrino £
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MINOS scintillator system

—ea— East strip end

12

s —a— West strip end ' ' :
10 |~ Sumof both ends _._'*‘ Slngle Strlp muon hlt
] ‘Z . .~ |efficiency

= | Single sided:
o e=1-exp(-2) = 86%
oo e, Double sided:
e=1-exp(-8) =99.97%

B *2

N
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Strip Response (Photo-electrons)
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Distance from Strip Center (m)

o

Fig. 26. Average light output from in-situ Far Detector strips as a function of distance from
their center for normally incident MIPs. The data shown are from stopping cosmic-ray
muons, for which containment crniteria cause lower statistical precision at the ends of the
Strips.
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Improvements in tracking

resolution
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e MINERVA incorporates several
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Why magnetize”

1.6 T L L L L LI | T T 1T T 1T TITT] T T T T ITT]

e Containment: A magnetic field can s
keep muons from exiting the sides of 15+ 26 O
your detector L

e Momentum measurement: If the muon o o <>¢éﬁ%
does exit your detector, the curvature }

13

. " + %q:%ﬂ?tfﬁm

of the track tells you the momentum
even when you couldn’t otherwise get

it from the range of the particle " *
e Charge sign: There are physics T RN
: : 1.0 10 102 103
measurements in knowing the charge P, [GeVic]

sign of the muons in your detector.
Crucial for the “golden channel” at a
neutrino factory:

@—wﬁ&v CVMHEM Up+A—pt + X
ne

Ve — V), VM+A@+X

proauction oscillation detection “‘wrong” sign!

Cosmic-ray g+/u- ratio
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Magnetic field in MINOS
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Fig. 6. Sketch of & cross section of one of the far detector supermodule coils. The larger
diameter circles represent the copper cooling tubes and the smaller circles are the 190
twms of 10 gagge stranded copper wire, The outlines of these conductors are to-scale
representations of the insulator thickness. The outer circumference of the assembly is a
copper-sheet jacket that is directly cooled by eight cooling tubes.

® 15.2 KA-turn total current

® 80 A supply

® 10 gauge copper wire, water
cooled
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MINOS
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Track momentum using curvature

A particle with momentum p, traveling
through a constant transverse

magnetic field B will travel on a circle

of radius o
p|GeV /c| = 0.2998 B|T|p|m
B > s
P
p 0.33—12
85

Measurement of sagitta and chord gives you
momentum. Detector resolution on sagitta is the

same as the momentum resolution:

op
p S

Tuesday, July 7, 2009
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More common to talk about the track curvature

1
k= —

0

which has roughly Gaussian errors.



Curvature errors for multiple position samples

e The uncertainty in curvature for a e Gluckstern has also worked out the
track which travels a distance L in a contribution to the uncertainty in
magnetic field B whose position is the curvature from multiple-
sampled N times at uniform scattering:

. . " . 5 KCn
intervals with a position uncertainty Ok M.5. = —F
€ has been worked out by
Gluckstern [NIM 24 (1963) * Kis the RMS projected multiple
381-389): scattering angle per unit thickness x
‘ 0o
e T2 K = —
O-I%,R — T4 ]\’77_|_O5 \/gx
\ — 13'22\;6\/,2 3;(0 1+ 0.038In(z/Xo)

e Cn is a constant from lookup table.
Cn=1.43 for large N.

Notice relative
importance of

Land ¢ - x is the distance traveled in the medium
- 7 IS the charge of the particle
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How well do we measure track curvature?

k
O k=0 0.3B
_¢‘+ v p
k<0 g ﬁ g k>0 O-kv\ , , ,
Ok =O0kR T Ok M.S.
0.35
1

RO +0.0079CN /P25 (14 0,038 log <&

x

units: [T], [GeV], [m]

@ | Remember: L xp, N xp, and x < p
S [ - High field
5 1l - Small €
% N - Large L (low Z to keep dE/dx low and range high)
& e o - Large Xo (low 2)
2 E— - “Just” right momentum (see plot at left)

o+ bw o m o -MINOS: 10% momentum resolution using curvature

P (arbitrary units)
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Tracking in the NEMO-3 detector (2vBp)

Transverse

wew
Vertex of
the ee-
emission

ot B = Qﬁﬂ

0

/

Longitudinal
view

Source foils

Scintillator

+ PMT
Vertex of

the ee-

/ﬁssion
e *— "ﬂ

Ve

Wire chamber planes
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Low density
medium ana
excellent sagitta
measurement
vields about a
4%
measurement
for electrons at
4 MeV



The NOVA Experiment

e NOVA is a second generation
experiment on the NuMI| beamline
which is optimized for the detection
of vy—Ve and v, — Ve Oscillations

e NOVA is:

e An upgrade of the NuMI beam
intensity from 400 kW to 700 kW

e A 15 kt “totally active” tracking
liquid scintillator calorimeter sited
14 mrad off the NuMI beam axis
at a distance of 810 km

e A 215 ton near detector identical
to the far detector sited 14 mrad
off the NuMI beam axis at a
distance of 1 km
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Liquid scintillator NVaiih
(14.8M liters, 12.6 ktons) e ceal
Contained in 3.9 x 6.6 cell cells of length 15.7 m & hangar
-18 m attenuation length
-5.5% pseudocumene

* snout (back)
bottom raceway M

To 1 APD pixel s k\\/ optical connector
Extruded PVC 5 \ R b g’
(5.4 ktons) | —y R ey
15% anatase TiO2 for high reflectivity *, | i - N
. E’% J ? ﬁ.(_\\ side seal
\Wavelength shifting fiber st s & Hanga:
(18k km) - - iy , distributed fill tube
- 0.7 mm diameter ‘ ‘“”I 7
- Looped, both ends to same readout pixel |\ /| "t T,
S
Avalanche photodiodes (APD) o RS
(14k boards, 32 channels each) SN
- 85% quantum efficiency at long wavelengths | S
- Collect 30 photoelectrons per muon crossing at o plae Y

far end of cell

Detector design
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Wall reflectivity

® [In NOVA cell, a ][ oA — .
photon typically . /'/ NOVA custom PVC blend
bounces off the cell » gl e : =
walls 10 times before . " Standard PVC blend
being captured by a :
fiber 7

® This makes the * 500
reflectivity of the cell 000 /
wall of crucial o /

Importance to i /

maximizing light e

» 0.8 =0.11

» 0.9%=0.35 Wall reflectivity is issue for other scintillator
10% improvement in detectors which co-extrude scintillator with a
reflectivity yields factor 3 T102 reflective coating

more light!
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Avalanche photo diodes (APD)

A Absorption region

\J
p IM \ Multiplication region

High (80%) quantum efficiency even into UV
Large dark currents - must be cooled to -15°C to get
noise down to ~10 pe equivalent
Low gains, x100
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NOVA Fiber and Photodetector

1
0.9
APD 7y
() A
. (\ Fiber length
£ 07 { —0.5m [
N \ 5 =i |
e 06 / \ \ - —2m
= 5 BCSI7L © |[T4m |
= 0.5 BLoA / \ fiber emission S o Rm
> i Llflm.d /\ spectrum O = lAm |
LﬂO‘ 0.47 Scintillator ] D —
0 / \ / A @T — PMT QE|
| / pmT \ = APD QE
0.2 /’ |
D I T . e T | : - i - i
350 400 450 500 550 600 650 700

scintillation light —> re-emission by fiber

The high QE of APD’s, especially at long wavelength, is crucial
to NOVA performance

Tuesday, July 7, 2009



v. (2.4 GeV) + N— ¢ (1.8 GeV) + X (Res)
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Neutrino | Antinetrino | Total Efficiency
Running Running (Includes
fiducial cut)
v, signal 75.0 29.0 104 36%
Backgrounds: | 14.4 7.6 22
v, NC 6.0 3.6 9.6 0.23%
v, CC 0.05 0.48 0.53 0.004 %
Beam v, 8.4 3.4 11.8 14%
FOM 19.8 10.5 22.1

Numbers generated assuming;:
sin?(20,,) = 0.10, sin*(20,,) = 1.0, and Am,,> = 0.0024 ¢V?
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Proton ID from dE/dx




